skip to main content


Search for: All records

Creators/Authors contains: "Chadha, Rohit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Games and competitions enhance student engagement and help improve hands-on learning of computing concepts. Focusing on targeted goals, competitions provide a sense of community and accomplishment among students, fostering peer-learning opportunities. Despite these benefits of motivating and enhancing student learning, the impact of competitions on curricular learning outcomes has not been sufficiently studied. For institutional or program accreditation, understanding the extent to which students achieve course or program learning outcomes is essential, and helps in establishing continuous improvement processes for the program curriculum. Utilizing the Collegiate Cyber Defense Competition (CCDC), a curricular assessment was conducted for an undergraduate cybersecurity program at a US institution. This archetypal competition was selected as it provides an effective platform for broader program learning outcomes, as students need to: (1) function in a team and communicate effectively (teamwork and communication skills); (2) articulate technical information to non-technical audiences (communication skills); (3) apply excellent technical and non-technical knowledge (design and analysis skills applied to problem-solving); and (4) function well under adversity (real-world problem-solving skills). Using data for both students who competed and who did not, student progress was tracked over five years. Preliminary analysis showed that these competitions made marginally-interested students become deeply engaged with the curriculum; broadened participation among women who became vital to team success by showcasing their technical and management skills; and pushed students to become self-driven, improving their academic performance and career placements. This experience report also reflects on what was learned and outlines the next steps for this work. 
    more » « less
    Free, publicly-accessible full text available December 5, 2024
  2. null (Ed.)
  3. null (Ed.)
    Differential privacy is a mathematical framework for developing statistical computations with provable guarantees of privacy and accuracy. In contrast to the privacy component of differential privacy, which has a clear mathematical and intuitive meaning, the accuracy component of differential privacy does not have a generally accepted definition; accuracy claims of differential privacy algorithms vary from algorithm to algorithm and are not instantiations of a general definition. We identify program discontinuity as a common theme in existing ad hoc definitions and introduce an alternative notion of accuracy parametrized by, what we call, — the of an input x w.r.t.  a deterministic computation f and a distance d , is the minimal distance d ( x , y ) over all y such that f ( y )≠ f ( x ). We show that our notion of accuracy subsumes the definition used in theoretical computer science, and captures known accuracy claims for differential privacy algorithms. In fact, our general notion of accuracy helps us prove better claims in some cases. Next, we study the decidability of accuracy. We first show that accuracy is in general undecidable. Then, we define a non-trivial class of probabilistic computations for which accuracy is decidable (unconditionally, or assuming Schanuel’s conjecture). We implement our decision procedure and experimentally evaluate the effectiveness of our approach for generating proofs or counterexamples of accuracy for common algorithms from the literature. 
    more » « less
  4. Termination checking is a classic static analysis, and, within this focus, there are type-based approaches that formalize termination analysis as type systems (i.e., so that all well-typed programs terminate). But there are situations where a stronger termination property (which we call strongly-bounded termination) must be determined and, accordingly, we explore this property via a variant of the simply-typed λ-calculus called the bounded-time λ-calculus (BTC). This paper presents the BTC and its semantics and metatheory through a Coq formalization. Important examples (e.g., hardware synthesis from functional languages and detection of covert timing channels) motivating strongly-bounded termination and BTC are described as well. 
    more » « less
  5. Model checking systems formalized using probabilistic models such as discrete time Markov chains (DTMCs) and Markov decision processes (MDPs) can be reduced to computing constrained reachability properties. Linear programming methods to compute reachability probabilities for DTMCs and MDPs do not scale to large models. Thus, model checking tools often employ iterative methods to approximate reachability probabilities. These approximations can be far from the actual probabilities, leading to inaccurate model checking results. On the other hand, specialized techniques employed in existing state-of-the-art exact quantitative model checkers, don’t scale as well as their iterative counterparts. In this work, we present a new model checking algorithm that improves the approximate results obtained by scalable iterative techniques to compute exact reachability probabilities. Our techniques are implemented as an extension of the PRISM model checker and are evaluated against other exact quantitative model checking engines. 
    more » « less
  6. Differential privacy is a de facto standard for statistical computations over databases that contain private data. Its main and rather surprising strength is to guarantee individual privacy and yet allow for accurate statistical results. Thanks to its mathematical definition, differential privacy is also a natural target for formal analysis. A broad line of work develops and uses logical methods for proving privacy. A more recent and complementary line of work uses statistical methods for finding privacy violations. Although both lines of work are practically successful, they elide the fundamental question of decidability. This paper studies the decidability of differential privacy. We first establish that checking differential privacy is undecidable even if one restricts to programs having a single Boolean input and a single Boolean output. Then, we define a non-trivial class of programs and provide a decision procedure for checking the differential privacy of a program in this class. Our procedure takes as input a program P parametrized by a privacy budget ϵ and either establishes the differential privacy for all possible values of ϵ or generates a counter-example. In addition, our procedure works for both to ϵ-differential privacy and (ϵ, δ)-differential privacy. Technically, the decision procedure is based on a novel and judicious encoding of the semantics of programs in our class into a decidable fragment of the first-order theory of the reals with exponentiation. We implement our procedure and use it for (dis)proving privacy bounds for many well-known examples, including randomized response, histogram, report noisy max and sparse vector. 
    more » « less